Tiefere Datenanalyse, NLP und mehr Automatisierung
sind gefragter denn je.
von Frank Zscheile
Omni- oder Multichannel sind für den Handel keine neuen Trends mehr, sondern vielfach gelebte Realität. Welcher Kanal bedient wird, ist zweitrangig, es geht um das Erlebnis, bei dem sich „online“ und „offline“ zu smarten Services ergänzen. Grundlage dafür sind die dahinterliegenden Datenmengen. Sie lassen sich heute durch Analyseinstrumente, die mit künstlicher Intelligenz angereichert sind, immer besser hinsichtlich ihrer weiteren Verwendung im Business-Kontext auswerten.
Neue Algorithmen zur Textanalyse sind inzwischen sogar in der Lage, Stimmungslagen in Kundenschreiben selbstständig zu erkennen. Solche bislang verborgenen Informationen können Handelsunternehmen im Sinne des Geschäftsnutzens einsetzen. Wenn Kundendaten genauer analysiert werden, lassen sich die Ergebnisse als Grundlage für individuelle Kundenansprachen und digitales Marketing einsetzen. Dabei werden alle Kunden-Touchpoints mit relevanten, vom Kunden gewünschten Informationen bespielt – ideal für die Stärkung von Kundenbindung (Customer Loyalty).
Neue Algorithmen zur Textanalyse sind inzwischen sogar in der Lage, Stimmungslagen in Kundenschreiben selbstständig zu erkennen.
Treiber dieser Entwicklung sind die Forderungen der Verbraucher nach Echtzeitunterstützung, kontinuierlicher Unterhaltung sowie umfassender Konnektivität und Sicherheit. So wird Consumer IoT zum nächsten logischen Schritt der digitalen Evolution des Handels.
Automatisierte Service-Interaktionen
„Themen wie künstliche Intelligenz und Blockchain haben ihre Nische längst verlassen und sind zu gesellschaftsrelevanten Themen geworden“, weiß auch Matthias Wahl, Präsident des Bundesverbandes Digitale Wirtschaft (BVDW) e. V. Mit KI lassen sich gleichzeitig Geschäftsabläufe zwischen IT-Systemen des Handels automatisieren, Stichwort „Robotic Process Automation“. B2B-Marktplätze werden an ERP-, CRM- und weitere Backendsysteme und Datenbanken angebunden. Dies führt weiter zu automatisierten Service-Chatbots, bei denen sich die Beschäftigten im Service erst später oder im Bedarfsfall in die konkrete Kundenkommunikation einschalten.
Gartner sagt voraus, dass 2021 15 Prozent aller Service-Interaktionen automatisiert sein werden. Künstliche Intelligenz wird dabei für eine zunehmend natürliche Art solcher sprachlichen Interfaces sorgen, was die Verbreitung wiederum verstärken wird. Wirkliche Dialoge sind es freilich nicht, die mit Chatbots ablaufen, sondern eher kurze Frage-Antwort-Sequenzen. Mit dem durch KI gewonnenen Wissen aus Datenbanken werden sich aber in absehbarer Zeit auch mehrstufige flexible Dialoge automatisieren lassen können. Dadurch erschließen sich neue Anwendungsfelder im Kundenservice, die mit einfachen Frage-Antwort-Systemen nicht adressiert werden können.
Unternehmen müssen „insight-driven“ werden
In seinem Report „The Forrester Wave™: AI-Based Text Analytics Platforms, Q2 2018“ beschreibt das Analystenhaus Forrester, wie sich durch den Einsatz künstlicher Intelligenz aus Daten zusätzliches Wissen gewinnen lässt. „Insight-driven“ müssten Unternehmen werden, fordert Forrester-Analyst Boris Evelson. Dabei geht es vor allem um das in unstrukturierten Daten enthaltene Wissen, welches in Unternehmen heute Schätzungen zufolge rund 80 Prozent ausmacht: E-Mails, PDFs, Archivsysteme, Videos, Tondokumente, Social-Media-Posts etc. Hierfür kommen Techniken der linguistischen und semantischen Analyse („Natural Language Processing – NLP“ oder Computerlinguistik) zum Einsatz.
Unter NLP versteht man die Fähigkeit eines Computerprogramms, menschliche Sprache so zu verstehen, wie sie gesprochen bzw. geschrieben wurde. Tiefergehende NLP-Systeme benutzen die Wortarten zur Extraktion vordefinierter Muster und extrahieren selbstständig bestimmte Kategorien von Begriffen, z. B. Personen- und Ortsnamen, Postleitzahlen, Nummernschilder.
Kundenkorrespondenz modern auswerten
Der eigentliche Prozess des Text-Minings und der Extraktion von Keywords, Themen und Konzepten liegt laut Forrester dabei nur bei rund einem Fünftel des Aufwands. Der weitaus größere Teil entfiele auf den Aufbau von Datenverbindungen, die Integration und Bereinigung der Daten sowie den Aufbau einer domänenspezifischen Ontologie und userorientierter Oberflächen. Während die meisten Hersteller noch immer hauptsächlich Stimmungsanalysen anbieten, ermöglicht die Software von Clarabridge auch eine hoch differenzierte Emotions-, Anstrengungs- und Absichtsanalyse.
Loyalität aus Daten
Das Konzept von Clarabridge zeigt, wie wichtig es sein kann, das in unstrukturierten Daten verborgene Wissen zu heben. Die Customer Loyalty lässt sich dadurch deutlich festigen. Im Omnichannel ist hier ohnehin noch Luft nach oben, glaubt Michael Bregulla, Head of New Sales bei der Ingenico Marketing Solutions GmbH. Das Unternehmen entwickelt Programme zur Vertiefung der Kundenbeziehungen für alle Verkaufskanäle. „Bindungseffekte sollten im Wesentlichen aus dem Preisvorteil generiert werden, obwohl der eigentliche Wert in den aggregierten Daten des bis dato anonymen Kunden liegt“, so Bregulla. „Schon heute schlummern bei vielen Händlern riesige Datenpotenziale, die gar nicht wertbringend abgeschöpft werden. Die Digitalisierung offenbart jetzt die Chance für eine ganzheitlichere Erfassung des Kundenverhaltens.“
Bindungseffekte sollten im Wesentlichen aus dem Preisvorteil generiert werden, obwohl der eigentliche Wert in den aggregierten Daten des bis dato anonymen Kunden liegt.
Dazu bedürfe es einerseits Werkzeuge wie linguistischer und semantischer Analyse. Gleichfalls sei aber ein erweitertes Mindset bei Handelsunternehmen gefragt und die Bereitschaft, Dinge auszuprobieren und auch wieder zu verwerfen. So kristallisiert sich für Händler ein Gesamtbild der technisch-organisatorischen Rahmenbedingungen heraus, wie sich das Datenpotenzial von Customer-Loyalty-Programmen im Omnichannel zur personalisierten Kundenansprache und Steuerung des Kaufverhaltens nutzen lässt.
Voice Commerce und Audiovermarktung
Smart Speaker wie Amazon Alexa, Google Home, Telekom Magenta und Co. und die dahinterliegende Voice-Technologie haben in jüngster Zeit die nächste Welle losgetreten und den Zugang zu Audio-Content weiter vereinfacht. BVDW-Präsident Matthias Wahl: „Dadurch erhält Audio-Content einen deutlichen Schub, den Unternehmen für sich nutzen müssen.“ Das Medium Audio verändert sich damit grundlegend: Content wird interaktiv und wächst von einer One-Way-Communication zu einem Dialog-Umfeld.
Sprachgesteuerte Smart Speaker werden neben der reinen Audio-Content-Nutzung zu hohen Anteilen zur Informationsbeschaffung genutzt. Eine weitere Möglichkeit für Handelsunternehmen, ihre Kunden zu adressieren. Die technologische Basis dieser Produkte ist wiederum die Fähigkeit von Software, menschliche Sprache immer besser zu verstehen. Analog zu anderen Kommunikationskanälen benötigen Unternehmen deshalb eine eigene Voice- und Audiostrategie. Sie müssen eine Audio-Identity und eigenen Audio-Content entwickeln und mit ihren Marken, Produkten und Angeboten ihren Zielgruppen auf die neuen Geräte folgen. Wie dies praktisch umzusetzen ist, dafür gibt der BVDW auf seiner Webseite hilfreiche Hinweise.
Einkauf auf Zuruf
Fragt man die Smart Speaker heute nach einem bekannten Produkt wie Pampers, so wird in der Regel erstmal der Wikipedia-Eintrag vorgelesen. „Voice Search SEO muss noch deutlich gezielter als Desktop und Mobile betrieben werden, um Verkaufschancen über Voice zu steigern – auch weil die Chancen auf Sichtbarkeit deutlich geringer sind als am Desktop“, erklärt Frank Bachér von RMS.
So wird sich Voice Commerce über Skills entwickeln und neben Webshops und Apps der nächste Absatzkanal für den Handel werden, in dem Einkäufe auf Zuruf möglich werden. Vor allem im Bereich der FMCG („Fast Moving Consumer Goods“) dürfte dies einer der spannendsten neuen Trends sein. Damit dürften die smarten Lautsprecher künftig wohl ihrem Namen eher gerecht werden im Vergleich zu heute, wo sie hauptsächlich nur für einfache Aufgaben wie das Abspielen von Musik und die Wettervorhersage genutzt werden. //
Kontakt zum Autor
Namensnennung – Weitergabe unter gleichen Bedingungen 3.0 Deutschland (CC BY-SA 3.0 DE)
Dies ist eine allgemeinverständliche Zusammenfassung der Lizenz (die diese nicht ersetzt).
Sie dürfen:
Teilen — das Material in jedwedem Format oder Medium vervielfältigen und weiterverbreiten
Bearbeiten — das Material remixen, verändern und darauf aufbauen
und zwar für beliebige Zwecke, sogar kommerziell.
Der Lizenzgeber kann diese Freiheiten nicht widerrufen solange Sie sich an die Lizenzbedingungen halten.
Unter folgenden Bedingungen:
Namensnennung — Sie müssen angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade Sie oder Ihre Nutzung besonders.
Weitergabe unter gleichen Bedingungen — Wenn Sie das Material remixen, verändern oder anderweitig direkt darauf aufbauen, dürfen Sie Ihre Beiträge nur unter derselben Lizenz wie das Original verbreiten.
Keine weiteren Einschränkungen — Sie dürfen keine zusätzlichen Klauseln oder technische Verfahren einsetzen, die anderen rechtlich irgendetwas untersagen, was die Lizenz erlaubt.